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1. Introduction

There are several uncertainties with respect to the analysis of 
structural reliability, and the fluctuations due to the uncertainty have a 
significant influence on the performance of structure products, which 
increases the requirements of the uncertainty analysis method for 
achieving reliable structures.

Traditionally, uncertainty is classified into two major categories, 
namely, aleatory or epistemic. Aleatory uncertainties in reliability 
analysis have been successfully addressed using the probability the-
ory, which requires completely statistical information based on prob-
ability distributions to describe the aleatory uncertainties [2,5,30]. 
The probabilistic reliability analysis methods with random variables 
include the moments method [3, 10, 40], response surface method [16, 
17], Monte Carlo method [36], and direct integration method [38]. 
Although the probabilistic methods have been successfully applied, 
the quality of the input information should be statistically guaranteed 

by a sufficiently large set of sample elements to verify the used dis-
tributions.

In contrast to aleatory uncertainties, epistemic uncertainties are 
knowledge-based and arise from imprecise modelling, simplification, 
and limited data availability [11]. There are several approaches for 
modelling epistemic uncertainties, such as the convex model method 
[9], possibility theory method [18], interval modelling [15, 27], evi-
dence theory [1, 37], and uncertainty theory [20]. As their representa-
tive, the fuzzy sets theory is widely used for reliability analysis [7, 32, 
39]. By the membership functions [28, 31], fuzzy reliability analysis 
can account for inaccuracies and uncertainty in data, which typically 
occurs when insufficient data is available to provide a useful statisti-
cal description.

However, with significant research on physical modeling and re-
liability analysis, it is found that aleatory and epistemic uncertain-
ties do not exist alone, i.e., certain information, precise values, and 
completely obscure information do not exist. Thus, the concept of the 
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W pracy przedstawiono metodę, która pozwala na uwzględnienie rozmytej niepewności losowej w strukturalnej analizie niezawod-
ności. Zaproponowana metoda określania funkcji przynależności niezawodności rozmytej wykorzystuje cztery momenty centralne 
dwóch rzędów czy czwarte momenty centralne drugiego rzędu obliczane w oparciu o rozkład obwiedni. Dla każdego poziomu 
cięcia, najpierw konstruuje się rozkład prawdopodobieństwa obwiedni, za pomocą którego opisuje się granice rozkładu rozmytych 
zmiennych losowych, a momenty centralne rozkładu ograniczonego wyznacza się poprzez generowanie prób z rozkładu obwiedni. 
Następnie, stosując nowoczesną metodę optymalnej aproksymacji, otrzymuje się aproksymowane wyrażenie wielomianowe funkcji 
gęstości prawdopodobieństwa rozkładu obwiedni, gdzie momenty centralne stanowią warunki ograniczające, które pozwalają 
aproksymować niezawodność za pomocą rozwinięcia Taylora drugiego rzędu funkcji stanu granicznego. W ten sposób granice 
niezawodności oblicza się na rozważanym poziomie cięcia, a następnie otrzymuje się funkcję przynależności niezawodności roz-
mytej. W artykule przeanalizowano trzy przykłady, na podstawie których wykazano skuteczność i trafność proponowanej metody. 
Przeprowadzono także porównanie z metodą symulacji Monte Carlo oraz metodą analizy rozmytej niezawodności pierwszego 
rzędu. Wyniki wskazują na wyższość omawianej metody, która pozwala analizować niezawodność strukturalną w warunkach 
losowości rozmytej.

Słowa kluczowe: rozmyta niepewność losowa, metoda aproksymacji, rozkład obwiedni, struktura, poziom cięcia.

YOU L, ZHANG J, Li Q, Ye N. Structural reliability analysis based on fuzzy random uncertainty. eksploatacja i Niezawodnosc –  
Maintenance and Reliability 2019; 21 (4): 599–609, http://dx.doi.org/10.17531/ein.2019.4.9.



Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol. 21, No. 4, 2019600

sciENcE aNd tEchNology

fuzzy random variable was proposed [14], where uncertain structural 
parameters governed by probability distributions with fuzzy param-
eters were introduced. Moreover, the fuzzy random variable recon-
ciles aleatory and epistemic uncertainties, allowing an uncertain ex-
pression with random distribution and incomplete information to be 
constructed. 

Willner [34] proposed an engineering concept to address fuzzy 
randomness. Möller et al. [25,26] presented a method for describing 
and predicting fuzzy time-series based on fuzzy random uncertain-
ties. Liu et al. [21] used fuzzy random variables as basic variables to 
establish a relationship between fuzzy random variables, in addition 
to fuzzy random events. Körner [13] evaluated the properties of the 
variations in fuzzy random variables, and then applied to linear re-
gression and limit theorems. Möller et al. [24] introduced a method 
for estimating the membership function of the safety index under 
the consideration of fuzzy randomness. A fuzzy first-order reliabil-
ity method (FFORM) was developed using fuzzy random variables. 
Terán [33] presented probabilistic results toward a framework for 
modelling measurements based on fuzzy random variables. Wang et 
al. [35] solved the time dependent reliability problem for systems with 
fuzzy random uncertainties using saddle point approximation simula-
tions. Koç et al. [12] used the theory of fuzzy random variables with 
fuzzy Monte Carlo simulations for reliability-based risk analysis of a 
rubble-mound breakwater. Shapiro [29] modelled the future lifetime 
as a fuzzy random variable, where the essential feature of the model 
was combined the stochastic component of mortality with the fuzzy 
component. In the study conducted by Jahani et al. [8], uncertain 
variables were modeled as fuzzy random variables. In addition, an 
interval Monte Carlo simulation (IMC) and the interval finite element 
method were used to evaluate the failure probability. Hryniewicz [6] 
presented a Bayesian approach to analysis the reliability under fuzzy 
random data. Li et al. [19] proposed a fuzzy reliability calculation 
method based on the error synthesis principle for fuzzy random un-
certainty inputs.

The abovementioned methods can be divided into three catego-
ries: namely, iteration algorithms, sampling algorithms, and approxi-
mation algorithms. However, the application of fuzzy random uncer-
tainties in addressing the reliability presents several problems when 
the abovementioned methods are used. With the combination of an 
iteration algorithm and traditional reliability algorithm, the calcula-
tion efficiency is not satisfied, and the accuracy is insufficient for high 
nonlinearity limit state functions. Moreover, sampling algorithms re-
quires significant operations in the membership interval, for which the 
efficiency is insufficiently low for complex structures. For the appli-
cation of approximation algorithms, it requires cumbersome transfor-
mations, which has a tremendous possibility of improvement.

Therefore, a novel structure reliability analysis method on TOFM 
based on envelope distribution is developed by combining the modern 
approximation algorithm, which considers the basic input variables 
as fuzzy random variables, and reliability analysis is expressed with 
respect to fuzzy numbers using the α cut level approach. In this study, 
modern approximation algorithms such as the maximum entropy 
model [1] and optimal square approximation method [22,41] were 
used to approximate the fuzzy probability density function (FPDF) 
with fuzzy random variable inputs. Only the central moments are used 
in the approximation without considering the actual distribution. At 
each cut level, a new measure distribution named envelope distribu-
tion is used to establish an accurate description for the envelope of 
the fuzzy random distribution, which is the boundary of the distri-
bution family of fuzzy random variables. In addition, the first four 
central moments of the envelope distribution are obtained using a 
statistical method and then the moments of limit state function are 
approximated based on envelope distribution moments according to 
the first two orders of magnitude of the Taylor expansion on limit 
state function. Thereafter, by considering the central moments as the 

constrained conditions, the undetermined polynomial coefficients are 
fitted by employing the modern approximation method. Hence, the 
approximated polynomial expression of the limit state function PDF 
boundary is obtained. Thereafter, the boundary of the reliability mem-
bership function is calculated, and the fuzzy reliability is obtained by 
the application of the abovementioned operation at each cut level.

Compared with traditional methods, the proposed method can 
solve the drawback of high computation loads, poor accuracy, and 
instability due to fuzzy random uncertainties. It facilitates reliability 
analysis without iterative algorithms at each cut level, whereas the 
classical reliability analysis method requires computationally com-
plex searches or optimization procedures. Furthermore, the proposed 
method only uses moments obtained from the statistical analysis of 
basic data, which is convenient for practical operations.

This article is structured as follows. Section 2 presents a brief in-
troduction to the fuzzy random variable. In Section 3, the concept of 
moment generation based on the sampling of the envelope distribu-
tion is presented. Section 4 presents a discussion on fuzzy reliability, 
in addition to modern approximation algorithms using the central mo-
ments of envelope distribution. Finally, in Section 5, three examples 
are provided to illustrate the method. 

2. Fuzzy Random Variable and Reliability

A fuzzy random variable x  is a random variable for which its 
distribution parameters are fuzzy numbers. x  can be defined on a 
fuzzy probability space Ω, F, P, wherein Ω is the space of the fuzzy 
random elementary events, and F  and P  are the subsets and fuzzy 
probability measure, respectively. A fuzzy random variable x  defines 
a mapping relationship from (Ω, μ(Ω)) to R Rn n,µ ( )( ) , i.e., (Ω, μ(Ω)) 

© ©, ,µ µ( )( ) → ( )( )R Rn n  [35][4], where ( )µ ⋅  is the membership degree. Each 
fuzzy random variable x  contains a basic realization random vari-
able x  as the initial of x . The α cut level approach is used to conduct 
fuzzy arithmetic operations. Hence, the fuzzy probability cumulative 
distribution function (FPCDF) of a fuzzy random variable can be ex-
pressed as follows:

F x F x F x F x F x F x F xL U( ) = ( ) ( )( )( ) ( ) = ( ) ( )



{ ( )( ) = ∀α α α α α αµ µ α, , , αα ∈ ]( }0 1,

(1)

where ( )F xα  is the FPCDF under the α cut level, and ( )LF xα  and 
( )UF xα  are the lower and upper bounds of ( )F xα , respectively. 

There is a set of distributions under different membership degrees. 
Fig. 1 presents a fuzzy random variable x  with FPCDF ( )F x  and 
FPDF ( )f x . The dashed and solid lines indicate probability func-
tions with fuzzy parameters that correspond to membership degrees 
of value 0 and 1, respectively.

Fig. 1. (a) Fuzzy probability density function; (b) fuzzy parameter; (c) fuzzy 
probability distribution functions.

Fuzzy random reliability is based on the use of fuzzy random vari-
ables as the basic variables for the reliability problem, which is meas-
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3. The distribution which central moments can not be expressed, e.g., 
a Cauchy distribution.

Fig. 2. (a) FPDF of fuzzy random variable; (b) FPCDF fuzzy random 
variable(c) envelope distribution

The envelope curve can encapsulate the boundaries of the dis-
tribution family. If only the upper and lower bound of the mean val-
ue are considered as sampling centers in the entire region, instead 
of separate on both sides of µα

U  and µα
L , e.g., x N U L~ ,µ σα α( )  or 

x N U U~ ,µ σα α( ) . This will produces inaccurate results, as indicated 
with the red line in Fig. 2(c).

The ith central moments of ( )UF xα  and ( )LF xα  are expressed as 
ν

αx iU  and ν
αx iL , respectively, which used in next section. Based on 

Xα  and aX , they can be calculated using a statistical method or a 

ured using the membership degree [34,23]. The limit state function 𝑦 
of the reliability model is defined as:

 ( ) ( )1 2, , , ny g g x x x= = …X     (2)

where { }1 2, , , nx x x= …X     are n  dimensional fuzzy ran-
dom variables, which have FPDFs of ( )( )1,2, ,if x i nα = …  at 
the α cut level. The fuzzy theory-based reliability defined as 

( )( ) ( ) ( )( ){{ }( ) , ( ) ( ) Pr{ 0}, ~ 1,2, ,r r r iR P P P g f x i nα α α αµ= = > = …X X

 
. 

It represents the influence of fuzziness on reliability based on different 
membership levels. Once the basic variables are defined using fuzzy 
membership functions at various membership levels, the reliability in-

terval at the α cut level ( ) ( ) ,( )L U
r r rP P Pα α α =    can be obtained with 

respect to ( )LF xα  and ( )UF xα , respectively; ( )L
rP α  and ( )UrP α  are 

the lower and upper bounds of rP  at the α cut level, respectively.

3. Moment Generation Based on Envelope Distribu-
tion

Moment generation based on sampling from the envelope distri-
bution is presented in this section. The envelope distribution is an 
envelope line that consists of the upper and lower boundaries of the 
FPCDFs of fuzzy random variables. The objective of envelope dis-
tribution is to comprehensively describe the boundary distribution of 
( )F x , and the central moments can be obtained using a statistical 

method. This is used for reliability analysis, which will be discussed 
in the next section.

For convenience, the process of generating an envelope distribu-
tion is illustrated by assuming the basic realization of a fuzzy random 
variable as normal distribution, as well as the other distribution. µ  
and σ  are the fuzzy mean value and fuzzy standard deviation of a 
fuzzy random variable   x N= ( , )µ σ , respectively. All the member-
ship functions are assumed to be fuzzy triangular number. Hence, the 
fuzzy mean and standard deviation can be expressed as 
µ µ µ µ= Low Mid Up; ;  and σ σ σ σ= Low Mid Up; ; , respectively, where 

the subscripts Low, Mid, and Up are the lower bound, median bound, 
and upper bound, respectively (in the following, these labels will be 
written as superscripts once the cut level expression is introduced). A 
fuzzy random variable with µ = −0 5 0 0 5. , , .  and σ = 0 9 1 1 1. , , .  is 
generated in MATLAB as an example, which is shown in Fig. 2, 
where the black line in Fig. 2(a) and the middle black line in Fig. 2(b) 
correspond to a membership degree of 1. According to the curves in 
Fig. 2(b), the boundary of the FPCDF is found to be an envelope of a 
set of curves. The upper and lower black lines in Fig. 2(c) are the en-
velope curves can be obtained by following operation: at each α cut 
level, after the bound of the interval numbers, µ µα α

L U,



  and 

σ σα α
L U,



  are obtained, the upper bound PDF( ( )UF xα ) of the fuzzy 

random variables is constructed by sampling from x N U L~ ,µ σα α( )  
on the left side of µα

U  and from x N U U~ ,µ σα α( )  on the right side of  

µα
U . The set of sampling points is defined as Xα = …{ }x x xn1 2, , , . In 

contrast, the lower bound PDF ( ( )LF xα ) is constructed by sampling 

from x N L U~ ,µ σα α( )  on the left side of µα
L , and from x N L L~ ,µ σα α( ) 

on the right side of µα
L . These sampling points are defined as 

{ }1 2, , ,a nx x x=X  . It should note that the envelope curve can be 
directly computed from CDFs if it could be expressed expediently, but 
in some cases the proposed generation method is really needed:1. The 
expression of CDF is very complex, such as the marginal distribution 
under the joint distribution of polar diameter and polar angle in two-
dimensional irregular walking issue.2. Those truncated distributions 
that are hard to express CDF, which is applied widely in engineering 

b)

a)

c)
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simple method for generating central moments, e.g., a universal gen-
erating function. Thereafter, the modern approximation method is em-
ployed to calculate the reliability interval at a given cut level.

4. Modern approximation method based on central 
moments of the envelope distribution

In this section, modern approximation methods that considers the 
central moments of the envelope distribution as constraint conditions 
is presented, which are used to approximate the fuzzy reliability 

( ) ( ) ,( )P P Pr r
L

r
U

α α α= 

  composed of different α cut levels. TOFM 

based on the envelope distribution can prevent large amount of itera-
tions and complex transformations. As typical modern approximation 
algorithms, the maximum entropy model and optimal square approxi-
mation methods are employed in TOFM in this study. These methods 
are extensively used due to their satisfactory fitting effect and easy 
implementation. The limit state function is defined as Z g= ( )X , 
where X  is the set of fuzzy random variables    X = …( )x x xn1 2, , , . 

Based on the FCDF bounds FU
α X( )  and F L

α X( )  of X , the upper 

and lower bounds of ZU
α  and Z L

α  are approximated by the first two 
orders of magnitude of the Taylor expansion at the MPP(most proba-
ble point, i.e. the point of greatest contribution to failure probability) 
xα

*U  (xα
*L) as follows:

Z g g gU
X

U U U T
X

U U U
XU U Uα α α α α α α α

α α α
≈ ( ) + − ∇ ( ) + −( )∇x X x x X x x* * * *( ) 1

2
2 ** *

* * *( )

U U U

L
X

L L L T
X

L LZ g gL L

( ) −( )
≈ ( ) + − ∇ ( ) +

X x

x X x x X

α α

α α α α α α
α α

1
2

−−( )∇ ( ) −( )










x x X xα α α α
α

* * *L
X

L L Lg L
2

(3)

where Xα α α α
U U U

n
Ux x x= …( )1 2, , ,  and Xα α α α

L L L
n

Lx x x= …( )1 2, , ,  are the 

variables that with distributions ( )UFα X  and ( )LFα X , respectively. 

( ) Xg∇ ⋅  is the partial derivative vector, ( )2
Xg∇ ⋅  is the Hessian ma-

trix. For convenience, the proposed method will be illustrated with the 
upper bound PDF approximation in the following. A standard nor-
mally distributed random variable UZα  can be normalized as 

Y ZU U
Z ZU Uα α µ σ
α α

= −( ) / , where UZα
µ  and UZα

σ  are the mean and 

standard deviation of UZα , respectively. Hence, the ith central mo-
ments of the upper bound at the α cut level can be calculated using 

v E Y y f y dy
Y i

U i i
YU U

α α
α= ( 

 = ( )
−∞

+∞

∫[ ) ( ) , which is a function of 

, 0,1,2,3,4, 1,2, ,U
jx i

i j n
α

ν = = …  according to Eq. (3). In addition, 

, 0,1,2,3,4, 1,2, ,U
jx i

i j n
α

ν = = …  are generated from , 1,2, ,j j nα = …X  

using the method discussed in Section 3. Thereafter, TOFM based on 
the envelope distribution can be implemented using modern approxi-
mation algorithms. To clearly demonstrate the proposed algorithm, 
the basic theories of the maximum entropy model and optimal square 
approximation method are briefly reviewed and combination with 
central moments are investigated  in the following subsection.

4.1. Maximum entropy model based on central moments

Shannon entropy is a measure of the degree of uncertainty of an 
event prior to its occurrence. Moreover, it is a measurement of the 
amount of information obtained from the event after the event (infor-
mation content). Under given conditions, there is a distribution of all 
possible probability distributions, which maximizes the information 
entropy. This is referred to as the Jaynes maximum entropy principle. 

Under the constraint of known information, the information entropy 
is greatest, and the probability distribution is the least biased. The 
entropy of the continuous random variable x  with PDF ( )f x  is de-
fined as [16]:

 ( ) ( )X XH c f x lnf x dx
+∞

−∞

= − ∫  (4)

where H  is referred to as the Shannon entropy and c is Boltzmann’s 
constant, which is greater than 0. Considering the central moments 

( )0,1,2,3,4UZ i
v i

α
=  of the limit state function UZα  as the constraint 

condition after normalization, the maximum entropy model of the up-
per bound of Z  at the α cut level can be expressed as follows: 

 
max ln

. . [ ) , , , ,

H c f z f z dz

s t E Y v i

U U

U i
Y iU

= − ( ) ( )

( 
 = =

−∞

+∞

∫ α α

α
α

0 1 2 3,,4










 (5)

The Lagrange multiplier method is therefore employed to solve 

the maximum entropy model, i.e., L H E Y v
i

i
U i

Y iU= + ( 
 −( )

=
∑

0

4
λ α

α
[ )  . 

The undetermined constant is defined as a
c0
01= −
λ

, where 

a
c

ii = − =( )λ0 1 2 3 4, , , , and the approximate expression of the prob-

ability density function of the limit state function is:

 ( )
4

0
expU

j
jY

j
f y a y

α =

 
 = −
 
 
∑  (6)

On the other hand, the first four moments of the upper bound at 

the α cut level are calculated from ν
αx ij

U i j n, , , , , , , , ,= = …0 1 2 3 4 1 2  , 

which are the moments of the envelope distribution as mentioned 
above. Substituting Eq. (6) into Eq. (5) yields Eq. (7):

  
4

0
exp , 0,1,2,3,4U

i j
j Y i

j
y a y dy v i

α

+∞

=−∞

 
 − = =
 
 
∑∫  (7) 

The polynomial fitting coefficients 0 1, , , ma a a…  of 
( )UY

f y
α

 could then be determined.

4.2. Optimal square approximation model based on central 
moments

The theoretical basis of the optimal square approximation meth-
od is as follows. If the central moments of two random variables are 
equal at each order, they have the same probability distribution char-
acteristics and eigenvalues. The undetermined coefficients of the PDF 
polynomials can be obtained by considering the central moments of 
each order as constraints in a given inner product space, thus deter-
mining the probability distribution [22, 41].

According to the above analysis, the FPDF bound ( ( )Uf zα  ) must 
be approximated at the given cut level. The optimal square approxi-
mation model involved in fuzzy random variables can be expressed 
as follows:
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on the interval of cut level. By employing the modern approxima-
tion method in TOFM, the approximate polynomial expression of the 
FPDF of limit state function can calculated. 

It should be noted that due to the extension of the expansion 
in Eq. (3) to the second moment, only the first four moments of 

, 0,1,2,3,4UY i
v i

α
=  can be expressed. If higher central moments re-

quired, Pearson family curves could be used to develop the relation-
ship between each central moment of the family curves, as follows:

 ( ) 0 11 1
2

, 4,5,
1 2U U UY i Y i Y i

kv c v c v i
k cα α α+ −

 = − + = …  + +
 (15)

where , 1,2,3ic i =  are the Pearson family curve parameters, which 
can be expressed in terms of the first four moments. It should be noted 
that the used constraint conditions order number is dependent on the 
specific case, and the order increases lead to an increase in the calcu-
lation time consumption. After obtaining the polynomial expression 

of ( )Uf zα , the upper bound of the fuzzy reliability probability at the 
α cut level under different modern approximation method is:

( ) Pr( ) Pr( )
,

P Z Y
y optimal square apprody

r
U U Z

Z

i
i

U

U
α α

µ

σ

λ
α

α

≈ ≥ = ≥ − =0
xximation

a y dy maximum e

i
m

j

m
j

j

ZU

ZU

=−∞

−

=

∑∫

∑−












0

0

µ

σ
α

α

exp , nntropyi
m

ZU

ZU

=−∞

−

∑∫
















0

µ

σ
α

α

(16)

The lower bound of the reliability probability at the α cut level 
LRα  is:

( ) Pr( ) Pr( )
,

P Z Y
y optimal squareapprody

r
L L Z

Z

i
i

L

L
α α

µ

σ

λ
α

α

≈ ≥ = ≥ − =0
xximation

a y dy maximume

i
m

j

m
j

j

Z

Z

L

L

=−∞

−

=

∑∫

∑−












0

0

µ

σ
α

α

exp , nntropyi
m

Z

Z

L

L

=−∞

−

∑∫
















0

µ

σ
α

α

(17)

Thus, the membership degree of reliability is obtained by per-
forming the abovementioned process at each cut level. The procedure 
involved in the TOFM based on the envelope distribution method can 
be summarized as follows:

Step 1. The family distribution of the fuzzy random variables 
under the given cut level can be obtained according to the mem-
bership interval of the fuzzy random variables.
Step 2. The envelope distribution is constructed for each fuzzy 
random variable at each cut level using the method presented in 
Section 3.
Step 3. Based on the envelope distribution, the respective bound 
central moments , 0,1,2,3,4Ux i

i
α

ν =  and , 0,1,2,3,4Lx i
i

α
ν =  of 

( )Uf xα  and ( )Lf xα  are obtained using a statistical method. 
Step 4. The bounds of the limit state function ( )Z g= X  at the α 
cut level UZα  and LZα  are approximated by the first two orders 

of the Taylor series expansion Each are normalized to UYα  and 
LYα .

 
( ) ( ) ( )

( ) ( )

2

,
0

min

. .

b
U U

a
m

U U
i i

i

I p z f z z dz

s t p z p z

α α

α α

ρ

λ
=


 = −  


 =


∫

∑
 (8)

where ( )Uf zα  is the upper bound PDF of the limit state function at 

the α cut level, ( )Up zα  is the approximate polynomial expression of 

( )Uf zα , ( )( ), 0,1,2, ,U
ip z i mα = …  is a continuous function of 1m +  

linearly independent functions based on the limit state function inter-
val [ ],a b , λi i m= …( )0 1, , ,  is the respective coefficient, and ρ x( )  is 
the weight function of the power on interval [ ],a b . 

The necessary condition 0
i

I
λ
∂

=
∂

 for the extremum of a multi-

variate function can be used to determine the system of linear equa-
tions with coefficients λ λ λ0 1, , ,… m , as follows:

 Aλ=B (9)

where the respective components of the matrix elements and vectors 
are:

 ( ) ( ) ( ), , 0, , 0,1, ,
b

U U
ij i j

a
A p z p z z dz i j mα α ρ= = = …∫  (10)

 ( ) ( ) ( ), 0, 0,1, ,
b

U U
i i

a
B f z p z z dz i mα α ρ= = = …∫  (11)

Given that ( ) ( ) ( ),0 ,1 ,, , ,U U U
mp z p z p zα α α…  are linearly indepen-

dent, and A  is an 1m +  order non-singular matrix, Eq. (9) has unique 
solutions. Let ( ), , 1,2,U i

ip z z i mα = = …  and ρ( ) 1zρ = ; A  and B  can 
then be calculated using Eqs. (12) and (13), respectively:

 
1 1

, , 0,1,2 ,
1

i j i j

ij
b aA i j m

i j

+ + + +−
= = …

+ +
 (12)

   , 0,1,2 ,Ui Y i
B v i m

α
= = …  (13)

Based on the general case of the optimal square approximation 
method, the estimates of a  and b  are related to the skewness coef-
ficients of UZα :

 
3 3

3 3

3.5, 0 3.5, 0
,

4.0, 0 4.0, 0

U U

U U

Y Y

Y Y

v v
a b

v v
α α

α α

− ≥ ≤  = = − < >  

 (14)

Thereafter, ( )0,1, ,i i mλ = …  can be solved using Eq. (9), yielding 

the approximate polynomial expression ( )
0

m
U i

i
i

p z zα λ
=

= ∑ . TOFM can 
be used when 4m = .

4.3. TOFM based on envelope distribution using modern 
approximation method

As discussed above, based on the envelope distribution, which is 
a conservative description of fuzzy random variables, the fuzzy ran-
domness problem is transformed into an approximate fitting problem 
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Step 5. The bound central moments , 0,1,2,3,4UY i
v i

α
=  and 

, 0,1,2,3,4LY i
v i

α
=  are calculated using Eq. (3), and the higher 

order moments are calculated using Eq. (15), if required. 
Step 6. Employing the modern approximation method by con-
sidering the bound central moments as the constraint conditions. 
In particular, for the maximum entropy model, as mentioned in 
section 4.1, the approximate polynomial expression is obtained 
using Eq. (7). For the optimal square approximation method, as 
mentioned in Section 4.2, A  and B  are calculated using Eqs. 
(12) and (13), respectively. The fitting polynomial coefficients 

, 0,1,2, ,j j mλ = …  are then obtained using Eq. (9).

Step 7. The bounds of the reliability at the α cut levels ( )UrP α  
and ( )L

rP α  are calculated using Eqs. (16) and (17), respectively. 
The steps above can be repeated at each α cut level, and yielding 
the fuzzy reliability. Fig. 3 shows a flowchart of the proposed 
method.

Fig. 3. Flowchart of TOFM based on the envelope distribution using the mod-
ern approximation method.

5. Examples

Three examples are presented to illustrate the proposed method. 
The first is a pure mathematical example. The second and third ex-
amples demonstrate the applicability of the proposed method in en-
gineering, i.e., loads or materials that are considered with respect to 
fuzzy randomness uncertainty. Results from the MCS and FFORM 
methods are compared with those from the proposed method as these 
are classical approaches to fuzzy random uncertainties. The numeri-
cal results illustrate the superiority of the present approach in terms 
of efficiency and accuracy. The results contain sharp enclosures for 
all values of the reliability probability based on the proposed method 
compared with those obtained by MCS and FFORM approaches.

5.1. Investigation 1 (numerical)

It is assumed that the limit state function of the structure is 

1 2 3= * 1200Z x x x− − , where x N x x1 1 1
~ , µ σ( ) , x N x x2 2 2

~ , µ σ( ) , 

and x N x x3 3 3
~ , µ σ( ) . The basic realization of , 1,2,3ix i =  are as-

sumed as normal distribution. The mean μ and standard deviation σ of 
the basic variables are considered as triangular fuzzy numbers: 

 
1

37.5;38;40xµ = ; 
1

1.6;2;2.4xσ =

 
2

53.5;54;56xµ = ; 
2

3.6;4;4.4xσ =

 
3

19.7;20;21xµ = ; 
3

1;1.5;2xσ =

α discretization is used for mapping the fuzzy space to the interval 
random space. Moreover, α is varied from 0 to 1, and the fuzzy num-
bers are evaluated at the following α: 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0. 
At each level, an interval is obtained for each distribution parameter, 
and the entire support domain of the problem is obtained for α = 0. 
Permissible domains for the distribution parameters could be easily 
calculated for different values of α. The results from the MCS and 
FFORM methods are compared in this example, as shown in Fig. 4.

For the MCS method, 64 combinations are used at each α cut level 

( N ix
low

x
up

x
low

x
up

i i
µ σ µ µ µ σ σ σ, , , , , , , ,( ) = =] [



 =

1 1
1 2 3 ), and 1,000,000 

analyses are required for each combination, thus the MCS method re-
quired 64 × 1,000,000 × 6(384,000,000) runs. For the FFORM meth-
od, four iterations are performed for constructing the bound fuzzy 
reliability index, which indicates that the FFORM method required 
64 × 4 × 6 (1536) runs. In comparison, the proposed method required 
two repetitions of the process at the upper and lower boundaries. 
Moreover, the maximum error at a given α cut level is found to be 
1.54×10-2 at α = 0 of the lower distribution, as shown in Table 1. This 
error level is acceptable compared to the entire reliability membership 
function. The proposed method provides a clear improvement in the 
calculation efficiency, and the results obtained by the three methods 
are similar. In addition, 1000 samples are used to construct the enve-
lope distribution, thus the proposed method required 6 × 1,000 × 6 
(36,000) sampling operations. A comparison of the computation time 
is shown in Table 1, which illustrate the great advantage of the con-
ventional methods. The result of the proposed method is included in 
the MCS and FFORM methods as shown in Fig. 4, that’s because the 
boundary extremum occurs when N x

low
x
up

i i
µ µ,( )  and N x

up
x
low

i i
µ µ,( )  

are operated. This indicates that the proposed method has the effect of 
correcting and amplifying reliability when the extremum is conserva-
tive. This example demonstrates the superiority of TOFM based on 
the envelope distribution approach with respect to other approaches 
in the reliability assessment of structures. In the following two ex-
amples, the efficiency of the proposed method is illustrated based on 
evaluation. 

Fig. 4. Reliability membership function in Example 1
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5.2. Investigation 2 (model)

A roof truss is presented in Fig. 5, for which the top boom and 
compression bars are reinforced with concrete, and the bottom boom 
and the tension bars are made of steel. This evaluation is conducted 
under the assumption that a uniformly distributed load q  is applied to 
the roof truss, and that a uniformly distributed load can be transformed 
into the nodal load / 4P ql= . The perpendicular defection c∆  of 
node C  can be obtained through mechanical analysis, and it is a func-

tion of the basic variables, i.e., 
2 3.81 1.13

2c
c c s s

ql
A E A E

 
∆ = + 

 
, where cA ,

sA , cE , sE , and l  are the cross-sectional area, elastic modulus, 

length of concrete, and length of the steel bars. With respect to safety 
and applicability, the limit condition is that c∆  of node C  could not 
exceed 3.1 cm, and the limit state function could be constructed using 

0.031 cg = − ∆ . The values of l  and q are shown in Table 2.

In this example, the basic realization of the fuzzy random vari-
ables CA , SA  CE , and SE  are assumed as the normal distribution. 
The mean and standard deviation of the variables are considered as 
triangular fuzzy numbers:

 2 23.85;4.0;4.1 10
CA mµ −= × ; 2 20.29;0.32;0.35 10

CA mσ −= ×

 3 20.99;1.0;1.01 10
SA mµ −= × ; 3 20.055;0.06;0.065 10

CA mσ −= ×

 101.64;1.67;1.7 10
CE Paµ = × ; 100.13;0.14;0.18 10

CE Paσ = ×

 110.90;0.91;0.92 10
SE Paµ = × ; 110.037;0.04;0.045 10

CE Paσ = ×

α is varied from 0 to 1, and the fuzzy numbers are evaluated at the 
following α: 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0. The results from the MCS 
and FFORM methods are compared in this example.

The MCS method require 256 combinations at each cut level in 
this example with 1,000,000 runs for each combination, i.e., the MCS 
method required 256 × 1,000,000 × 6 (1,536,00,000) runs. For the 
FFORM method, six iterations are performed for each combination, 

i.e., the FFORM method required 256 × 6 × 6 (9216) runs. In com-
parison, the proposed method requires two repetitions at the upper and 
lower boundaries. The maximum error for a given α cut level is 
5.15×10-3 at Level 0, as shown in Table 3, which illustrates the reli-
ability probability at each level using the three methods. In addition, 
1000 samples are used to construct the envelope distribution, thus the 
proposed method required 8 × 1,000 × 6 (48,000) sampling opera-
tions, illustrating its advantage over the MCS method. In this case, the 
computational efficiency of the TOFM based on the envelope distri-
bution is evident in this example compared with the results from the 
MCS and FFORM methods. As the number of dimensions and nonlin-
earity increase, the advantage of this method is demonstrated, as 
showed by computation time in Table 3. In contrast with Example 1, 
the result of the MCS and FFORM methods are included in the pro-
posed method, that’s because the proposed method boundary extre-

mum occurs when ( ),
i i

low low
x xN µ µ  and ( ),

i i
up up
x xN µ µ  are operated. 

This indicates that the proposed method has the effect of correcting 
and diminishing reliability when the extremum occurs on the side 
combination instead of the cross combination of mean and standard 
deviation  as shown in Example 1. The application of the proposed 
method in this paper to complex structures is presented below.

Table 1. Fuzzy reliability probability for the example 1

ME_TOFM
Reliability probability

OSA_TOFM
Reliability probability

FFORM
Reliability probability

MCS
Reliability probability

α LR UR LR

1.0 0.95247 0.95279 0.95405 0.95372 0.95433 0.95433 0.95208 0.95241

0.8 0.94707 0.96744 0.94807 0.96920 0.94570 0.97134 0.94347 0.97030

0.6 0.94004 0.97868 0.94111 0.98028 0.93634 0.98320 0.93382 0.98258

0.4 0.93233 0.98687 0.93363 0.98802 0.92633 0.99088 0.92301 0.99049

0.2 0.92389 0.99218 0.92455 0.99297 0.91573 0.99547 0.91201 0.99517

0.0 0.91553 0.99569 0.91591 0.99578 0.90460 0.99796 0.90051 0.99780

Computation time 123.98 s 115.55 s 151.41 s 188.73 s

Table 2. Variables in Example 2

Variable Value

l(m) 12

q(104 N) 2

Fig. 5. Truss stress diagram
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5.3. Investigation 3 (model)

A truss member structural system is one of the most common 
structural forms in structural engineering. Fig. 7 shows the square 
grid structure of the square plate. The length of the upper chord plane 
is 5.0 m, the length of the lower chord plane is 4.0 m, the length of 
the string is 1.0 m, the height of the net frame is 0.7 m (the vertical 
distance between the upper and lower chords), the upper chord plane 
is hinged, and  the lower chord are free. The bar is made of steel, and 
the mean values of the rod diameters are 4 24.91 10 m−×  with density 
of 3 37.8 10 /kg m× . In addition, the mean modulus of elasticity and 
Poisson’s ratio are 207 GPa and 0.3, respectively. Three loads labelled 
P44, P49, and P54(location node 44, 49 and 54) are considered as in-
dependent fuzzy random variables, as shown in Fig. 7. The loads are 
applied along the negative Z direction ( Z∆ ). The serviceability limit 
state of the deflection is considered. The vertical deflection limit at any 
node is set as 4.57 cm. The limit state function could be constructed 
using 4.57 ( )Z maxg = − ∆ . The assumed diameter of the rods, modu-
lus of elasticity, and Poisson’s ratio are shown in Table 4.

The basic realization of the fuzzy random loads are assumed to be 
normal distribution. The mean and standard deviation are considered 
as triangular fuzzy numbers:

 44 4800;5000;5200P Nµ = ; 44 386;400;404P Nσ = ;

 49 9500;10000;10500P Nµ = ; 49 792;800;808P Nσ = ;

 54 4800;5000;5200P Nµ = ; 54 386;400;404P Nσ =

α discretization is used to map this fuzzy space to the interval 
random space. Moreover, α is varied from 0 to 1 in intervals of 0.2. 
The results from MCS and FFORM approach are compared in this 
example. 

The negative direction of the Z axis Z∆  are calculated using fi-
nite element software ANSYS. Moreover, as a problem with implicit 
limit-state functions, multi-point approximations are constructed for 
the limit state, and the closed-form expressions could then be con-
structed to estimate the reliability bound. The Latin hypercube sam-
pling technique is used to sample 35 design points in the abovemen-
tioned methods.

On this basis, the fuzzy reliability of the structure could be ob-
tained using the proposed method, and the results for different cut lev-
els are listed in Table 5. The maximum displacement along the Z axis 
is shown in Fig. 8. The results show that node 49 is the point where 
maximum displacement occurs. The reliability membership function 
is presented in Fig. 9. 

Table 4. Variable value of Example 3

Variable Value

Diameter of rods 4.91×10⁻4 m2

Modulus of elasticity 207 GPa

Poisson ratio 0.3

Table 3. Fuzzy reliability probability for Example 2

ME_TOFM
Reliability probability

OSA_TOFM
Reliability probability

FFORM
Reliability probability

MCS
Reliability probability

α LR UR LR UR LR UR LR UR

1.0 0.99780 0.99785 0.99796 0.99789 0.99769 0.99769 0.99765 0.99784

0.8 0.99617 0.99887 0.99591 0.99927 0.99637 0.99859 0.99643 0.99866

0.6 0.99403 0.99941 0.99350 0.99992 0.99447 0.99918 0.99466 0.99919

0.4 0.99078 0.99971 0.99007 0.99999 0.99186 0.99954 0.99224 0.99954

0.2 0.98595 0.99986 0.98522 0.99970 0.98837 0.99976 0.98867 0.99975

0.0 0.97929 0.99994 0.97934 0.99969 0.98383 0.99988 0.98444 0.99987

Computation time 136.2 s 139.31 s 187.04 s 239.45 s

Fig. 7. Space-truss structure

Fig. 6. Reliability membership function in Example 2.
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Similarly, the MCS method had 64 combinations in this exam-
ple, i.e., it required 64 × 1,000,000 × 6 (384,000,000) runs. For the 
FFORM method, seven iterations are used in the bound distribution, 
which required 64 × 7 × 6 (2688) runs. In comparison, the proposed 
method also requires two repetitions of the process at the upper and 
lower boundaries. Table 5 shows the reliability probability at each 
cut level. Moreover, 1000 samples are used to construct the envelope 
distribution. Therefore, the proposed method required 6 ×1,000 × 6 
(36,000) samples. Table 5 shows a comparison of the computation 

time with each method. Fig. 9 shows that the membership function 
of the proposed method exhibits conservative characteristics com-
pared with the MCS method, which is more precise than the FFORM 
method due to the increased nonlinearity. There is a clear increase in 
efficiency that is significant considering the structural complexity.

6. Conclusion

In this study, a novel structural reliability analysis method with 
an uncertainty information model is applied to fuzzy random vari-
ables. The fuzzy reliability is calculated by using TOFM based on the 
envelope distribution. In the proposed method, based on the conserva-
tive characteristics of the bound distribution, the envelope distribu-
tion is used to describe the fuzzy random variables, which converts 
the fuzzy randomness into a probability problem. Hence, the bounds 
of the fuzzy reliability are calculated. Without the requirement of an 
iterative algorithm for calculating the reliability index β, the proposed 
method provides a significant advantage with respect to the simplifi-
cation of the reliability calculation and the increased efficiency of the 
reliability analysis.

As illustrated in the examples, by combining with the modern 
approximation method, the proposed method only requires the cen-
tral moments of each variable, which eliminates numerous iterative 
processes. Moreover, the calculation scale is considerably reduced 
compared with conventional reliability analysis methods, which sig-
nificantly broadens its applicability. As the number of uncertainty var-
iables increases, the efficiency of the proposed method is significant 
when the performance of the compared methods is unsatisfactory. 
The results show that the proposed method has the correction func-
tion. The fuzzy reliability can be appropriately increased or decreases 
according to the combination of mean and standard deviation when 
extreme value occurs.

Table 5. Fuzzy reliability probability for the example 3

ME_TOFM
Reliability probability

OSA_TOFM
Reliability probability

FFORM
Reliability probability

MCS
Reliability probability

α LR UR LR UR LR UR LR UR

1.0 0.99630  0.99654  0.99647  0.99626  0.99788  0.99778   0.99772 0.99787

0.8  0.99390  0.99837  0.99437  0.99814  0.99673  0.99873 0.9963 0.99877

0.6  0.99130  0.99921  0.99183  0.99904  0.99429  0.99929   0.99379 0.99927

0.4  0.98841  0.99959  0.98886  0.99964  0.99056  0.99962   0.99002 0.99961

0.2  0.98415 1.0  0.98468 1.0  0.98503 0.9998   0.98467 0.99981

0.0  0.97780 1.0  0.97854 1.0  0.97708 0.9999  0.97664 0.99990

Computation time 115.92 s 115.22 s 238.74 s 276.43 s

Fig. 8. Displacement diagram in ANSYS

b)

a)

Fig. 9. Reliability membership function in Example 3



Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol. 21, No. 4, 2019608

sciENcE aNd tEchNology

The results of proposed method tend to be conservative, and they 
are suitable for engineering applications. In particular, the central mo-
ments of the envelope distribution appropriately describe the upper 
and lower bounds of the numerical characteristics of fuzzy random 
variables, which can be used as the input in reliability or other analy-
ses. Furthermore, several aspects can also be evaluated, i.e., how to 
quickly select the most suitable value of m and accurately estimating 
a and b.
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